Deleting a Value From a B-Tree



Deletion from a B-tree is more complicated than insertion, because
we can delete a key from any node-not just a leaf and when we
delete a key from an internal node, we will have to rearrange the
node’s children.

There are three possible case for deletion in b tree.

Case-l target key is in the leaf node

= Target is in the leaf node, more than min keys.
= Deleting this will not violate the property of B Tree
= Target is in leaf node, it has min key nodes
= Deleting this will violate the property of B Tree
= Target node can borrow key from immediate left node, or immediate right
node (sibling)
= The sibling will say yes if it has more than minimum number of keys
= The key will be borrowed from the parent node, the max value will be
transferred to a parent, the max value of the parent node will be transferred
to the target node, and remove the target value
= Target is in the leaf node, but no siblings have more than min number of keys
= Search for key
= Merge with siblings and the minimum of parent nodes
= Total keys will be now more than min
= The target key will be replaced with the minimum of a parent node



Case 2- target key is in an internal node

= Either choose, in- order predecessor or in-order successor

» In case the of in-order predecessor, the maximum key from its left subtree will be
selected

= In case of in-order successor, the minimum key from its right subtree will be
selected

= If the target key's in-order predecessor has more than the min keys, only then it
can replace the target key with the max of the in-order predecessor

= If the target key's in-order predecessor does not have more than min keys, look
for in-order successor's minimum key.

= If the target key's in-order predecessor and successor both have less than min
keys, then merge the predecessor and successor.



Case 3- target key is in a root node

» Replace with the maximum element of the in-order predecessor

subtree

= If, after deletion, the target has less than min keys, then the target
node will borrow max value from its sibling via sibling's parent.

= The max value of the parent will be taken by a target, but with the
nodes of the max value of the sibling.



1,2,3,4,5,6,7,8,9,10

M=3
Max key M-1=3-1=2

IN Case Of Leaf Node

Delete 10






Internal Node Deletion Delete 65

Replace with in- order predecessor or in-order successor

In- order predecessor of 65 = 60
in-order successor 0f 65 =70



Replace with in-order successor Of 65 =70




